

Cows Give Both – Milk and Power: Using Biogas in Gas Engines

Biomass Digestion

Advantages of Anaerobic Digestion

For farmers, the agricultural & food industry:

- improvement of manure properties: odor reduction, elimination of acid components,
 viscosity decrease, mineralization of organic nitrogen, reduction of pathogenic germs and
 weed seeds
- additional incomings from heat and power production
- waste water treatment without costly sewer connection

For the environment:

- reduction of methane and ammonia emissions from manure
- reduction of nitrate wash-out into groundwater
- recycling of fertilizer compounds from organic wastes
- reduction of carbon dioxide emissions by substitution of fossil resources

Biogas Yields

		Gas m³ / t dry matter	amount m ³ / t wet matter	Power generation kWh / t wet matter
Manure	Cattle manure	210	25	50
	Chicken manure	340	10	140
Fresh plant parts	Grass Clover Corn plant Sugar beet leaves Potato leaves	500 420 650 390 500	110 90 250 90 110	220 180 500 180 220
Silages	Grass silage	450	190	380
	Corn silage	590	200	400
Hay	Barley hay Oat hay Wheat hay (raw) Wheat hay (fine)	240 280 155 300	220 250 135 260	440 500 270 520
Wastes	Bio waste	250	130	260
	Food waste	480	110	220

Biomass Digestion

Biomass
Biogas production
Compost production
m³/year
Landfill gas
Electricity production
Heat production

19,900 to/year 3,036,000 m³/year 4,950

2,371,000m³/year 6,510 MWh/year 3,260 MWh/year

Siggerwiesen/Austri a 3 x JMS 316 GS B/L.L

Plant Output 1,629 kW_{el} Thermal Output 2,373 kW

Biomass Digestion Siggerwiesen

Biomass Digestion Siggerwiesen

Gasometer 2,500m³

Delivered Engines – NG / NNG Application

1988 - 2004

AD of biomass - Germany

Gut Wolfring / Germany

1 x JMC 208 GS-B.L

Electrical Output: 330 kW

Thermal Output: 421 kW

AD of biomass St. Veit/Glan / Austria

St. Veit /Austria

1 x JMC 320 GS-B.LC

Electrical Output: 1,065 kW

Thermal Output: 1,052 kW

Biogas Plant

Japan/Food industry

JMS 316 GS-B/N.L

Biogas/Natural gas

Electrical Output: 522 kW

Utilization of landfill gas

background and experience

Landfill gas production

- 1 ton domestic waste => 150 250 Nm³ Landfill gas over a period of 15 25 years
- LHV = appox. 4.5 5 kWh/Nm³

0 - 50% collectable from a covered landfill

Source: Biogasvolume and Properties; U. Loll, ATV Seminar 2/99 Essen; Germany

Delivered Engines – NG / NNG Application

1988 - 2004

Utilization of Landfill Gas

NENT/Hong Kong

2 x JGC 320 GS-L.L

Electrical Output: 2 x 922 kW

Utilization of Landfill Gas

Simeprodeso /MEX

7 x JGC 320 GS-L.L

Electrical Output: 7,042 kWel

Utilization of Landfill Gas

Arpley/UK

18 x JGC 320 GS-L.L

Electrical Output: 18,612 kWel

Utilization of Coal Mine Methane

Coal mine methane utilization

Delivered Engines – NG / NNG Application

1988 - 2004

Active Mine Fenne/Germany

Fenne/Germany

14 x JMS 620 GS S.LC

Electrical Output: 40 MWel

Total Operating Hours:

175 000

GWh: 474

Closed Mine Shirebrook/ UKI

Shirebrook Colliery/UK

5 x JMS 616 GS-S.L

Electrical Output: 10 MW

Total Operating Hours: 178 000

GWh: 310

CDM possibilities with Jenbacher gas engines

Natural Gas - The Cleanest Fossil Fuel

CO₂ formed by the combustion of fossil fuels

[kg CO₂/kWh fuel input]

Source: Third Report of the Parliamentary Commission on "Preventive Measures to Protect the Earth's Atmosphere" published in October 1990

GE imagination at work

Example for specific CO2 – production of different technologies

 $=> 0.669 \text{ kg CO}_2$

Total 0.963 kg CO₂

 $=> 0.294 \text{ kg CO}_2$

Total 0.5 kg CO₂

=> 48% CO₂-reduction with Cogeneration

*) Source: "Ganzheitliche Bilanzierung der Energiebereitstellung"
FfE-Studie; Energy Mix Germany 1996: 0.669 kg CO₂/kWh_{el}
GE imagination at work

Natural Gas - CHP

Theoretical Emission Reduction Potential:

0.5t / MWh * 8000hr / year
⇒appr. 4,000t CO₂ / MWel / year
⇒appr. €20,000 / MWel / year

Assumption: Energy Mix Germany; 40% el. Efficiency; 8,000 OH/y; 1ton CO2: 5€

Biogas

Theoretical example for: St. Veit, Austria Engine type: 1 x JMC 320 GS-B.L.

Electrical output: 1.065kW

Emission Reduction Potential:
8200t CO₂/ year

(eq. 40,000 €)

GE imagination at work

Emission Reduction Potential:

0.963 t / MWh * 8000 hr / year

⇒appr. 7,700t CO₂ / MWel / year

⇒appr. €38,500/year

Assumption: Energy Mix Germany; 40% el. Efficiency; 8,000 OH/y; 1ton CO2: 5€

Coal Mine Gas

Theoretical example for: Tahmoor Colliery/ Australia Engine Type: 7 x JGS 320 GS-S.L

Electrical Output: 7 MW Emission Reduction Potential: 240,000t CO₂/ year (eq. 1.2 Mio. €)

GE imagination at work

Emission Reduction Potential:

2.5 kWh coal mine gas => 1 kWhel

2.5 kWh coal mine gas = 0.18 kg CH_4 (GWP CH₄ = 21)

=> 3.76 kg CO₂- equivalent

=> 4.22 kg /kWhel CO₂ reduction by CHP with CMN

4.22t / MWh * 8000hr / year

⇒ appr. 34,000t CO₂ / MWel / year

⇒ appr. €170,000 / MWel / year

Landfill Gas

Emission Reduction Potential

Landfill Gas has to be flared:

0.669 t / MWh * 8000 hr / year

⇒appr. 5,350t CO₂ / MWel / year

⇒appr. €27,000/year

Landfill Gas doesn't have to be flared:

4.43 t / MWh * 8000 hr / year

⇒appr. 35,000t CO₂ / MWel / year

⇒appr. €175,000/year

Theoretical example for: Landfill site Nent, Hongkong Engine type: 2 x JGC 320 GS-L.L

Electrical output: 1,844 kW

Emission Reduction potential: 9 865t

CO₂/year

ACOmpton Programmix Germany; 40% el. Efficiency; 8,000 OH/y; 1ton CO2: 5

CDM – a key component

- Biogas power generation projects in several cases viable because of CDM
- Costs of project development should be lowered and bureaucratic barriers simplified
- 2012 window is closing fast ⇒ opportunities could be lost if immediate action is not taken
- Jenbacher gas engines offer the benefit of both: useful utilization of renewable energy sources for power generation & creating carbon credits

